LA LUZ Y EL ESPECTRO ELECTROMAGNÉTICO
Sentido de la visión
Es el sentido humano más perfecto y evolucionado. El órgano receptor es el ojo o globo ocular, órgano par alojado en las cavidades orbitarias.
LUZ VISIBLE
La luz visible es una de las formas como se desplaza la energía. Las ondas de luz son el resultado de vibraciones de campos eléctricos y magnéticos, y es por esto que son una forma de radiación electromagnética (EM). La luz visible es tan sólo uno de los muchos tipos de radiación EM, y ocupa un pequeño rango de la totalidad del espectro electromagnético. Sin embargo, podemos percibir la luz directamente con nuestros ojos, y por la gran importancia que tiene para nosotros, elevamos la importancia de esta pequeña ventana en el espectro de rayos EM.
Las ondas de luz tienen longitudes de onda entre 400 y 700 nanómetros (4 000 y 7 000 Å). A medida que el arcoiris se llena de matices, nuestros ojos perciben diferentes longitudes de ondas de luz.
El ojo humano evolucionó en respuesta a la luz emitida por el Sol. Es por esto que nuestros ojos son sensibles a los colores que abarcan del amarillo al verde.
La luz visible es una pequeña región del espectro electromagnético cuyas ondas tienen una longitud que va desde los 780 nanometros de la luz roja a unos 380 en la violeta.
Esta pequeña región del espectro es la luz que percibe el ojo humano y nos permite ver los objetos.
La luz blanca es el conjunto de todas las longitudes de onda del espectro visible en proporciones iguales. Cada longitud de onda corresponde a un color diferente del rojo al violeta.
El color de las cosas depende en la manera en que reflejan la luz. La luz blanca es la mezcla de todos los colores. Puedes ver estos colores si haces pasar la luz a través de un cristal especial que se llama prisma.
Cuando la luz blanca atraviesa un prisma, se dispersa y se separa en diferentes colores. Si miras atentamente podrás ver siete tiras de color, cada una penetrando en las siguientes.
Los colores son rojo, naranja, amarillo, verde, azul, añil o índigo (una mezcla de azul y violeta) y finalmente violeta.
Cuando la luz blanca ilumina un objeto, parte de los colores son absorbidos y otros son reflejados; cuando las cosas se ven blancas es porque aborven todos los colores y no reflejan ninguno, y cuando las cosas se ven negras es porque no reflejan casi nada de luz que les llega.
La luz se propaga en línea recta. La línea recta que representa la dirección y el sentido de la propagación de la luz se denomina rayo de luz (el rayo es una representación, una línea sin grosor, no debe confundirse con un haz, que sí tiene grosor).
Un hecho que demuestra la propagación rectilínea de la luz es la formación de sombras. Una sombra es una silueta oscura con la forma del objeto.
OJO Y CELULAS RECEPTORAS
El ojo es un órgano que detecta la luz, por lo que es la base del sentido de la vista.
Se compone de un sistema sensible a los cambios de luz, capaz de transformar éstos en impulsos eléctricos. Los ojos más sencillos no hacen más que detectar si los alrededores están iluminados u oscuros. Los más complejos sirven para proporcionar el sentido de la vista.
El ojo es el órgano de la visión en los seres humanos y en los animales. Los ojos de las diferentes especies varían desde las estructuras más simples, capaces de diferenciar sólo entre la luz y la oscuridad, hasta los órganos complejos que presentan los seres humanos y otros mamíferos, que pueden distinguir variaciones muy pequeñas de forma, color, luminosidad y distancia. En realidad, el órgano que efectúa el proceso de la visión es el cerebro; la función del ojo es traducir las vibraciones electromagnéticas de la luz en un determinado tipo de impulsos nerviosos que se transmiten al cerebro.
La cantidad de luz que entra en el ojo se controla por la pupila, que se dilata y se contrae con este fin. La córnea y el cristalino, cuya configuración está ajustada por el cuerpo ciliar, enfoca la luz sobre la retina, donde unos receptores la convierten en señales nerviosas que pasan al cerebro. Una malla de capilares sanguíneos, el coroides, proporciona a la retina oxígeno y azúcares. Izquierda: Las glándulas lagrimales secretan lágrimas que limpian la parte externa del ojo de partículas y que evitan que la córnea se seque. El parpadeo comprime y libera el saco lagrimal; con ello crea una succión que arrastra el exceso de humedad de la superficie ocular.
La retina tiene una estructura compleja. Está formada básicamente por varias capas de neuronas interconectadas mediante sinapsis. Las únicas células sensibles directamente a la luz son los conos y los bastones. Los bastones funcionan principalmente en condiciones de baja luminosidad y proporcionan la visión en blanco y negro, los conos sin embargo están adaptados a las situaciones de mucha luminosidad y proporcionan la visión en color.
La capa interna o retina, está constituida por células fotosensibles, que son de 2 tipos :
• conos, que aprecian los colores, y
• bastones, que aprecian el blanco y el negro
Las primeras o células fotorreceptoras (conos y bastones) se localizan apuntando hacia la parte posterior del globo ocular de forma que para alcanzar estas células la luz debe atravesar un montón de estructuras de forma que sólo aproximadamente el 10 % de la luz que incide sobre la córnea alcanza la retina. De esta luz no toda es capturada por los fotorreceptores y así por ejemplo en algunos vertebrados nocturnos aparece una capa reflectante llamada tapete situada por detrás de los fotorreceptores cuya función es incrementar la posibilidad de que la luz más tenue estimule a las células y esto es lo que explica que muchos ojos de animales brillen en la noche.
Las células receptoras son los conos y los bastones. Los conos se relacionan con la visión en colores la visión diurna, y los bastones con la visión nocturna. existen más de 100 millones de bastones en el ojo humano, y cerca de 4 millones de conos. Cada bastón se divide en un segmento externo y uno interno, el que a su ves posee una región nuclear y una región sináptica. En el segmento externo unos discos llamados discos contienen compuestos fotosensibles en sus membranas, que responden a la luz provocando una serie de reacciones que inicán potenciales de acción.
Los conos también poseen estos segmentos, a diferencia de los conos, su región exterior tiene una conformación distinta, mediante el plegamiento de su membrana se da lugar a la formación de los sacos, en cuyas membranas también se encuentran pigmentos fotosensibles.
VISION Y PERCEPCIÓN
En concreto, la luz entra a través de la córnea, después, el rayo luminoso
encuentra el iris, y a través de la pupila el rayo luminoso pasa al cristalino,
después del cristalino, la luz atraviesa una masa gelatinosa clara, el humor
vítreo, por último, el rayo de luz llega a la retina.
Las impresiones obtenidas por las células sensoriales de la retina son conducidas por el nervio óptico y posteriormente a la vía óptica, al centro visual del cerebro, donde la imagen toma forma y la percibimos.
La visión y percepción son dos procesos dependientes entre sí, pero muy diferentes. Hablamos de visión cuando nos referimos al hecho físico de recibir y sentir la luz con nuestro aparato ocular.
o VISIÓN
o CAMPO VISUAL
Estas sensaciones visuales deben ser procesadas por el cerebro para que puedan ser comprendidas, a esto le llamaremos percepción. Podemos estudiar la percepción desde distintos puntos de vista:
o PERCEPCIÓN DE LA FORMA
o PERCEPCIÓN DEL ESPACIO
o PERCEPCIÓN DEL COLOR
o PERCEPCIÓN DEL MOVIMIENTO
La percepción puede ser engañada, ¿cómo? Observa las ILUSIONES ÓPTICAS.
En la percepción visual de las formas hay un acto óptico-físico que funciona mecánicamente de modo parecido en todos los hombres. Las diferencias fisiológicas de los órganos visuales apenas afectan al resultado de la percepción, y eso que, tamaño, separación, pigmentación y otras muchas características de los ojos, hacen captaciones diferenciadas de los modelos. Su mecánica funcional, inspeccionando por recorridos superficiales y profundos, rápidos o lentos, itinerarios libres y obligados, los intervalos del parpadeo o el descanso por el "barrido" de los ojos, producen una información prácticamente idéntica en todos los individuos de vista sana. Las diferencias empiezan con la interpretación de la información recibida; las desigualdades de cultura, educación, edad, memoria, inteligencia, y hasta el estado emocional, pueden alterar grandemente el resultado. Porque se trata de una lectura, de una interpretación inteligente de señales, cuyo código no está en los ojos sino en el cerebro. Estas formas o imágenes se "leen" a semejanza de un texto literario, unas fórmulas matemáticas o una partitura musical, y de igual manera tiene su aprendizaje, requiriendo una gramática que explique sus leyes y profundice el sentido de la lectura.
Las impresiones obtenidas por las células sensoriales de la retina son conducidas por el nervio óptico y posteriormente a la vía óptica, al centro visual del cerebro, donde la imagen toma forma y la percibimos.
La visión y percepción son dos procesos dependientes entre sí, pero muy diferentes. Hablamos de visión cuando nos referimos al hecho físico de recibir y sentir la luz con nuestro aparato ocular.
o VISIÓN
o CAMPO VISUAL
Estas sensaciones visuales deben ser procesadas por el cerebro para que puedan ser comprendidas, a esto le llamaremos percepción. Podemos estudiar la percepción desde distintos puntos de vista:
o PERCEPCIÓN DE LA FORMA
o PERCEPCIÓN DEL ESPACIO
o PERCEPCIÓN DEL COLOR
o PERCEPCIÓN DEL MOVIMIENTO
La percepción puede ser engañada, ¿cómo? Observa las ILUSIONES ÓPTICAS.
En la percepción visual de las formas hay un acto óptico-físico que funciona mecánicamente de modo parecido en todos los hombres. Las diferencias fisiológicas de los órganos visuales apenas afectan al resultado de la percepción, y eso que, tamaño, separación, pigmentación y otras muchas características de los ojos, hacen captaciones diferenciadas de los modelos. Su mecánica funcional, inspeccionando por recorridos superficiales y profundos, rápidos o lentos, itinerarios libres y obligados, los intervalos del parpadeo o el descanso por el "barrido" de los ojos, producen una información prácticamente idéntica en todos los individuos de vista sana. Las diferencias empiezan con la interpretación de la información recibida; las desigualdades de cultura, educación, edad, memoria, inteligencia, y hasta el estado emocional, pueden alterar grandemente el resultado. Porque se trata de una lectura, de una interpretación inteligente de señales, cuyo código no está en los ojos sino en el cerebro. Estas formas o imágenes se "leen" a semejanza de un texto literario, unas fórmulas matemáticas o una partitura musical, y de igual manera tiene su aprendizaje, requiriendo una gramática que explique sus leyes y profundice el sentido de la lectura.
Color
El color es una sensación que
producen los rayos luminosos en los órganos visuales y que es interpretada en
el cerebro. Se trata de un fenómeno físico-químico donde cada color
depende de la longitud de onda.
Los cuerpos iluminados absorben parte de las ondas
electromagnéticas y reflejan las restantes. Dichas ondas reflejadas son
captadas por el ojo y, de acuerdo a la longitud de onda, son interpretadas por
el cerebro. En condiciones de poca luz, el ser humano sólo puede ver en blanco
y negro.
El color blanco, en este sentido, es el
resultado de la superposición de todos los colores. El color negro,
en cambio, es lo contrario y se define como la ausencia de color. Cabe destacar
que se conoce como colores primarios a aquellos que no pueden obtenerse a
partir de la mezcla de otros colores.
En este sentido, además hay que subrayar que existen varios
tipos de colores. Más concretamente podemos hablar de dos grandes grupos en
base a la sensación térmica que representan y a su relación con el entorno: los
cálidos y los fríos.
En la primera categoría se incluirían el rojo, el amarillo,
el naranja, el escarlata y el verde limón. Se trata de colores que apuestan por
la positividad y que nos otorgan sensación de alegría, de diversión, de calor.
En el segundo grupo, los fríos, se encuentran inmersos colores
tales como el azul, el violeta, el verde y el blanco, aunque este último no se
considere un color como tal. Serenidad, sentimentalismo y frío son los que nos
provocan aquellos que en decoración se utilizan para conseguir sensación de
amplitud.
Además de todo lo expuesto tampoco podemos pasar por alto la
existencia de lo que se da en llamar colores nacionales. Este es un término que
se emplea para definir a aquellos que toma un país como identificativos y que,
por tanto, aparecen en su bandera y demás emblemas.
Es interesante resaltar que existe una enfermedad que hace
que quien la padezca tenga problemas para diferenciar los colores,
concretamente el rojo, el verde y el azul. Se trata de una patología de tipo
genético que se divide en varios grados: acromático, dicromático, monocromático
o tricromático.
Las definimos como el tono, saturación, brillo.
Tono (hue), matiz o croma es el atributo que diferencia el
color y por la cual designamos los colores: verde, violeta, anaranjado.
Saturación:(saturation) es la intensidad cromática o pureza
de un color Valor (value) es la claridad u
oscuridad de un color, está
determinado por la cantidad de luz que un color tiene. Valor y luminosidad
expresan lo mismo.
Brillo (brightness) es la cantidad de luz emitida por una
fuente lumínica o reflejada por una superficie.
Luminosidad (lightness) es la cantidad de luz reflejada por
una superficie en comparación con la reflejada por una superficie blanca en
iguales condiciones de iluminación.
Espectro Electromagnético
El espectro electromagnético (o simplemente
espectro) es el rango de todas las radiaciones electromagnéticas posibles. El
espectro de un objeto es la distribución característica de la radiación
electromagnética de ese objeto.
El espectro electromagnético se extiende desde las bajas frecuencias usadas para la radio moderna (extremo de la onda larga) hasta los rayos gamma (extremo de la onda corta), que cubren longitudes de onda de entre miles de kilómetros y la fracción del tamaño de un átomo.
El espectro electromagnético se extiende desde las bajas frecuencias usadas para la radio moderna (extremo de la onda larga) hasta los rayos gamma (extremo de la onda corta), que cubren longitudes de onda de entre miles de kilómetros y la fracción del tamaño de un átomo.
Se piensa que el límite de la longitud de onda corta está en
las cercanías de la longitud Planck, mientras que el límite de la longitud de
onda larga es el tamaño del universo mismo, aunque en principio el espectro sea
infinito y continuo.
Rango del espectro
El espectro cubre la energía de ondas electromagnéticas que
tienen longitudes de onda diferentes. Las frecuencias de 30 Hz y más bajas
pueden ser producidas por ciertas nebulosas estelares y son importantes para su
estudio. Se han descubierto frecuencias tan altas como 2.9 * 1027 Hz a partir
de fuentes astrofísicas.
La energía electromagnética en una longitud de onda particular λ (en el vacío) tiene una frecuencia asociada f y una energía fotónica E. Así, el espectro electromagnético puede expresarse en términos de cualquiera de estas tres variables, que están relacionadas mediante ecuaciones.
De este modo, las ondas electromagnéticas de alta frecuencia tienen una longitud de onda corta y energía alta; las ondas de frecuencia baja tienen una longitud de onda larga y energía baja.
Siempre que las ondas de luz (y otras ondas electromagnéticas) se encuentran en un medio (materia), su longitud de onda se reduce. Las longitudes de onda de la radiación electromagnética, sin importar el medio por el que viajen, son, por lo general, citadas en términos de longitud de onda en el vacío, aunque no siempre se declara explícitamente.
Generalmente, la radiación electromagnética se clasifica por la longitud de onda: ondas de radio, microondas, infrarroja y región visible, que percibimos como luz, rayos ultravioleta, rayos X y rayos gamma.
El comportamiento de la radiación electromagnética depende de su longitud de onda. Las frecuencias más altas tienen longitudes de onda más cortas, y las frecuencias inferiores tienen longitudes de onda más largas. Cuando la radiación electromagnética interacciona con átomos y moléculas, su comportamiento también depende de la cantidad de energía por cuanto que transporta. La radiación electromagnética puede dividirse en octavas (como las ondas sonoras).
La espectroscopia puede descubrir una región mucho más amplia del espectro que el rango visible de 400 nm a 700 nm. Un espectroscopio de laboratorio común puede descubrir longitudes de onda desde 2 nm a 2500 nm. Con este tipo de aparatos puede obtenerse información detallada sobre las propiedades físicas de objetos, gases o incluso estrellas. La espectrometría se usa sobre todo en astrofísica. Por ejemplo, muchos átomos de hidrógeno emiten ondas de radio que tienen una longitud de onda de 21.12 cm.
La energía electromagnética en una longitud de onda particular λ (en el vacío) tiene una frecuencia asociada f y una energía fotónica E. Así, el espectro electromagnético puede expresarse en términos de cualquiera de estas tres variables, que están relacionadas mediante ecuaciones.
De este modo, las ondas electromagnéticas de alta frecuencia tienen una longitud de onda corta y energía alta; las ondas de frecuencia baja tienen una longitud de onda larga y energía baja.
Siempre que las ondas de luz (y otras ondas electromagnéticas) se encuentran en un medio (materia), su longitud de onda se reduce. Las longitudes de onda de la radiación electromagnética, sin importar el medio por el que viajen, son, por lo general, citadas en términos de longitud de onda en el vacío, aunque no siempre se declara explícitamente.
Generalmente, la radiación electromagnética se clasifica por la longitud de onda: ondas de radio, microondas, infrarroja y región visible, que percibimos como luz, rayos ultravioleta, rayos X y rayos gamma.
El comportamiento de la radiación electromagnética depende de su longitud de onda. Las frecuencias más altas tienen longitudes de onda más cortas, y las frecuencias inferiores tienen longitudes de onda más largas. Cuando la radiación electromagnética interacciona con átomos y moléculas, su comportamiento también depende de la cantidad de energía por cuanto que transporta. La radiación electromagnética puede dividirse en octavas (como las ondas sonoras).
La espectroscopia puede descubrir una región mucho más amplia del espectro que el rango visible de 400 nm a 700 nm. Un espectroscopio de laboratorio común puede descubrir longitudes de onda desde 2 nm a 2500 nm. Con este tipo de aparatos puede obtenerse información detallada sobre las propiedades físicas de objetos, gases o incluso estrellas. La espectrometría se usa sobre todo en astrofísica. Por ejemplo, muchos átomos de hidrógeno emiten ondas de radio que tienen una longitud de onda de 21.12 cm.
Tipos de radiación
Aunque el esquema de clasificación suele ser preciso, en
realidad existe algo de trasposición entre tipos vecinos de energía
electromagnética. Por ejemplo, las ondas de radio a 60 Hz pueden ser recibidas
y estudiadas por astrónomos, o pueden ser conducidas a lo largo de cables como
energía eléctrica. También, algunos rayos gamma de baja energía realmente
tienen una longitud de onda más larga que algunos rayos X de gran energía. Esto
es posible porque "rayo gamma" es el nombre que se le da a los
fotones generados en la descomposición nuclear u otros procesos nucleares y
subnucleares, mientras que los rayos X son generados por transiciones
electrónicas que implican electrones interiores muy energéticos. Por lo tanto,
la diferencia entre rayo gamma y rayo X está relacionada con la fuente de radiación
más que con la longitud de onda de la radiación. Generalmente, las transiciones
nucleares son mucho más energéticas que las transiciones electrónicas, así que
los rayos gamma suelen ser más energéticos que los rayos X. Sin embargo, hay
transiciones nucleares de baja energía (p.ej. la transición nuclear de 14.4 keV
del Fe-57) que producen rayos gamma que son menos energéticos que algunos de
los rayos X de mayor energía.
Radiofrecuencia
Las ondas de radio suelen ser utilizadas mediante antenas del tamaño apropiado (según el principio de resonancia), con longitudes de onda en los límites de cientos de metros a aproximadamente un milímetro. Se usan para la transmisión de datos, a través de la modulación. La televisión, los teléfonos móviles, las resonancias magnéticas, o las redes inalámbricas y de radio-aficionados, son algunos usos populares de las ondas de radio.
Las ondas de radio pueden transportar información variando la combinación de amplitud, frecuencia y fase de la onda dentro de una banda de frecuencia. El uso del espectro de radio está regulado por muchos gobiernos mediante la asignación de frecuencias. Cuando la radiación electromagnética impacta sobre un conductor, se empareja con él y viaja a lo largo del mismo, induciendo una corriente eléctrica en la superficie de ese conductor mediante la excitación de los electrones del material de conducción. Este efecto (el efecto piel) se usado en las antenas. La radiación electromagnética también puede hacer que ciertas moléculas absorban energía y se calienten, una característica que se utiliza en en los microondas.
Radiofrecuencia
Las ondas de radio suelen ser utilizadas mediante antenas del tamaño apropiado (según el principio de resonancia), con longitudes de onda en los límites de cientos de metros a aproximadamente un milímetro. Se usan para la transmisión de datos, a través de la modulación. La televisión, los teléfonos móviles, las resonancias magnéticas, o las redes inalámbricas y de radio-aficionados, son algunos usos populares de las ondas de radio.
Las ondas de radio pueden transportar información variando la combinación de amplitud, frecuencia y fase de la onda dentro de una banda de frecuencia. El uso del espectro de radio está regulado por muchos gobiernos mediante la asignación de frecuencias. Cuando la radiación electromagnética impacta sobre un conductor, se empareja con él y viaja a lo largo del mismo, induciendo una corriente eléctrica en la superficie de ese conductor mediante la excitación de los electrones del material de conducción. Este efecto (el efecto piel) se usado en las antenas. La radiación electromagnética también puede hacer que ciertas moléculas absorban energía y se calienten, una característica que se utiliza en en los microondas.
Microondas
La frecuencia super alta (SHF) y la frecuencia extremadamente alta (EHF) de las microondas son las siguientes en la escala de frecuencia. Las microondas son ondas los suficientemente cortas como para emplear guías de ondas metálicas tubulares de diámetro razonable. La energía de microondas se produce con tubos klistrón y tubos magnetrón, y con diodos de estado sólido como los dispositivos Gunn e IMPATT. Las microondas son absorbidas por la moléculas que tienen un momento dipolar en líquidos. En un horno microondas, este efecto se usa para calentar la comida. La radiación de microondas de baja intensidad se utiliza en Wi-Fi.
El horno microondas promedio, cuando está activo, está en un rango cercano y bastante poderoso como para causar interferencia con campos electromagnéticos mal protegidos, como los que se encuentran en dispositivos médicos móviles y aparatos electrónicos baratos.
Rayos T
La radiación de terahertzios (o Rayos T) es una región del espectro situada entre el infrarrojo lejano y las microondas. Hasta hace poco, este rango estaba muy poco estudiado, ya que apenas había fuentes para la energía microondas en el extremo alto de la banda (ondas submilimétrica o también llamadas ondas terahertzios). Sin embargo, están apareciendo aplicaciones para mostrar imágenes y comunicaciones. Los científicos también buscan aplicar la tecnología de rayos T en las fuerzas armadas, donde podrían usarse para dirigirlas a las tropas enemigas, ya que las ondas de alta frecuencia incapacitan los equipos electrónicos.
Radiación infrarroja
La parte infrarroja del espectro electromagnético cubre el rango desde aproximadamente los 300 GHz (1 mm) hasta los 400 THz (750 nm). Puede ser dividida en tres partes:
* Infrarrojo lejano, desde 300 GHz (1 mm) hasta 30 THz (10 μm). La parte inferior de este rango también puede llamarse microondas. Esta radiación es absorbida por los llamados modos rotatorios en las moléculas en fase gaseosa, mediante movimientos moleculares en los líquidos, y mediante fotones en los sólidos. El agua en la atmósfera de la Tierra absorbe tan fuertemente esta radiación que confiere a la atmósfera efectividad opaca. Sin embargo, hay ciertos rangos de longitudes de onda ("ventanas") dentro del rango opaca¡o que permiten la transmisión parcial, y pueden ser usados en astronomía. El rango de longitud de onda de aproximadamente 200 μm hasta unos pocos mm suele llamarse "radiación submilimétrica" en astronomía, reservando el infrarrojo lejano para longitudes de onda por debajo de los 200 μm.
* Infrarrojo medio, desde 30 a 120 THz (10 a 2.5 μm). Los objetos calientes (radiadores de cuerpo negro) pueden irradiar fuertemente en este rango. Se absorbe por vibraciones moleculares, es decir, cuando los diferentes átomos en una molécula vibran alrededor de sus posiciones de equilibrio. Este rango es llamado, a veces, región de huella digital, ya que el espectro de absorción del infrarrojo medio de cada compuesto es muy específico.
* Infrarrojo cercano, desde 120 a 400 THz (2500 a 750 nm). Los procesos físicos que son relevantes para este rango son similares a los de la luz visible.
Radiación visible (luz)
La frecuencia por encima del infrarrojo es la de la luz visible. Este es el rango en el que el Sol y las estrellas similares a él emiten la mayor parte de su radiación. No es probablemente una coincidencia que el ojo humano sea sensible a las longitudes de onda que el sol emite con más fuerza. La luz visible (y la luz cercana al infrarrojo) son absorbidas y emitidas por electrones en las moléculas y átomos que se mueven desde un nivel de energía a otro. La luz que vemos con nuestros ojos es realmente una parte muy pequeña del espectro electromagnético. Un arco iris muestra la parte óptica (visible) del espectro electromagnético; el infrarrojo (si pudiera verse) estaría localizado justo a continuación del lado rojo del arco iris, mientras que el ultravioleta estaría tras el violeta.
La radiación electromagnética con una longitud de onda entre aproximadamente 400 nm y 700 nm es detectado por el ojo humano y percibida como luz visible. A otras longitudes de onda, sobre todo al infrarrojo cercano (más largo de 700 nm) y al ultravioleta (más corto que 400 nm) también se les llama luz a veces, sobre todo cuando la visibilidad para los humanos no es relevante.
Si la radiación que tiene una frecuencia en la región visible del espectro electromagnético se refleja en un objeto, como por ejemplo un plato hondo de fruta, y luego impacta en nuestros ojos, obtenemos una percepción visual de la escena. El sistema visual de nuestro cerebro procesa la multitud de frecuencias reflejadas en diferentes sombras y matices, y a través de este fenéomeno psicofísico que todavía no se entiende completamente, es como percibiríamos los objetos.
En la mayor parte de las longitudes de onda, sin embargo, la información transportada por la radiación electromagnética no es directamente descubierta por los sentidos humanos. Las fuentes naturales producen radiación electromagnética a través del espectro, y nuestra tecnología también puede manipular un amplio rango de longitudes de onda. La fibra óptica transmite luz que, aunque no es adecuada para la visión directa, puede transportar datos que luego son traducidos en sonido o imagen. La codificación usada en tales datos es similar a lo que se usa con las ondas de radio.
Luz ultravioleta
La siguiente frecuencia en el espectro es el ultravioleta (o rayos UV), que es la radiación cuya longitud de onda es más corta que el extremo violeta del espectro visible.
Al ser muy energética, la radiación ultravioleta puede romper enlaces químicos, haciendo a las moléculas excepcionalmente reactivas o ionizándolas, lo que cambia su comportamiento. Las quemaduras solares, por ejemplo, están causadas por los efectos perjudiciales de la radiación UV en las células de la piel, y pueden causar incluso cáncer de piel si la radiación daña las moléculas de ADN complejas en las células (la radiación UV es un mutágeno). El Sol emite una gran cantidad de radiación UV, lo que podría convertir rápidamente la Tierra en un desierto estéril si no fuera porque, en su mayor parte, es absorbida por la capa de ozono de la atmósfera antes de alcanzar la superficie.
Rayos X
Después del ultravioleta vienen los rayos X. Los rayos X duros tienen longitudes de onda más cortas que los rayos X suaves. Se usan generalmente para ver a través de algunos objetos, así como para la física de alta energía y la astronomía. Las estrellas de neutrones y los discos de acreción alrededor de los agujeros negros emiten rayos X, lo que nos permite estudiarlos.
Los rayos X pasan por la mayor parte de sustancias, y esto los hace útiles en medicina e industria. También son emitidos por las estrellas, y especialmente por algunos tipos de nebulosas. Un aparato de radiografía funciona disparando un haz de electrones sobre un "objetivo". Si los electrones se disparan con suficiente energía, se producen rayos X.
Rayos gamma
Después de los rayos X duros vienen los rayos gamma. Son los fotones más energéticos, y no se conoce el límite más bajo de su longitud de onda. Son útiles a los astrónomos en el estudio de objetos o regiones de alta energía, y son útiles para los físicos gracias a su capacidad penetrante y su producción de radioisótopos. La longitud de onda de los rayos gamma puede medirse con gran exactitud por medio de dispersión Compton.
No hay ningún límite exactamente definido entre las bandas del espectro electromagnético. Algunos tipos de radiación tienen una mezcla de las propiedades de radiaciones que se encuentran en las dos regiones del espectro. Por ejemplo, la luz roja se parece a la radiación infrarroja en que puede resonar algunos enlaces químicos.
La frecuencia super alta (SHF) y la frecuencia extremadamente alta (EHF) de las microondas son las siguientes en la escala de frecuencia. Las microondas son ondas los suficientemente cortas como para emplear guías de ondas metálicas tubulares de diámetro razonable. La energía de microondas se produce con tubos klistrón y tubos magnetrón, y con diodos de estado sólido como los dispositivos Gunn e IMPATT. Las microondas son absorbidas por la moléculas que tienen un momento dipolar en líquidos. En un horno microondas, este efecto se usa para calentar la comida. La radiación de microondas de baja intensidad se utiliza en Wi-Fi.
El horno microondas promedio, cuando está activo, está en un rango cercano y bastante poderoso como para causar interferencia con campos electromagnéticos mal protegidos, como los que se encuentran en dispositivos médicos móviles y aparatos electrónicos baratos.
Rayos T
La radiación de terahertzios (o Rayos T) es una región del espectro situada entre el infrarrojo lejano y las microondas. Hasta hace poco, este rango estaba muy poco estudiado, ya que apenas había fuentes para la energía microondas en el extremo alto de la banda (ondas submilimétrica o también llamadas ondas terahertzios). Sin embargo, están apareciendo aplicaciones para mostrar imágenes y comunicaciones. Los científicos también buscan aplicar la tecnología de rayos T en las fuerzas armadas, donde podrían usarse para dirigirlas a las tropas enemigas, ya que las ondas de alta frecuencia incapacitan los equipos electrónicos.
Radiación infrarroja
La parte infrarroja del espectro electromagnético cubre el rango desde aproximadamente los 300 GHz (1 mm) hasta los 400 THz (750 nm). Puede ser dividida en tres partes:
* Infrarrojo lejano, desde 300 GHz (1 mm) hasta 30 THz (10 μm). La parte inferior de este rango también puede llamarse microondas. Esta radiación es absorbida por los llamados modos rotatorios en las moléculas en fase gaseosa, mediante movimientos moleculares en los líquidos, y mediante fotones en los sólidos. El agua en la atmósfera de la Tierra absorbe tan fuertemente esta radiación que confiere a la atmósfera efectividad opaca. Sin embargo, hay ciertos rangos de longitudes de onda ("ventanas") dentro del rango opaca¡o que permiten la transmisión parcial, y pueden ser usados en astronomía. El rango de longitud de onda de aproximadamente 200 μm hasta unos pocos mm suele llamarse "radiación submilimétrica" en astronomía, reservando el infrarrojo lejano para longitudes de onda por debajo de los 200 μm.
* Infrarrojo medio, desde 30 a 120 THz (10 a 2.5 μm). Los objetos calientes (radiadores de cuerpo negro) pueden irradiar fuertemente en este rango. Se absorbe por vibraciones moleculares, es decir, cuando los diferentes átomos en una molécula vibran alrededor de sus posiciones de equilibrio. Este rango es llamado, a veces, región de huella digital, ya que el espectro de absorción del infrarrojo medio de cada compuesto es muy específico.
* Infrarrojo cercano, desde 120 a 400 THz (2500 a 750 nm). Los procesos físicos que son relevantes para este rango son similares a los de la luz visible.
Radiación visible (luz)
La frecuencia por encima del infrarrojo es la de la luz visible. Este es el rango en el que el Sol y las estrellas similares a él emiten la mayor parte de su radiación. No es probablemente una coincidencia que el ojo humano sea sensible a las longitudes de onda que el sol emite con más fuerza. La luz visible (y la luz cercana al infrarrojo) son absorbidas y emitidas por electrones en las moléculas y átomos que se mueven desde un nivel de energía a otro. La luz que vemos con nuestros ojos es realmente una parte muy pequeña del espectro electromagnético. Un arco iris muestra la parte óptica (visible) del espectro electromagnético; el infrarrojo (si pudiera verse) estaría localizado justo a continuación del lado rojo del arco iris, mientras que el ultravioleta estaría tras el violeta.
La radiación electromagnética con una longitud de onda entre aproximadamente 400 nm y 700 nm es detectado por el ojo humano y percibida como luz visible. A otras longitudes de onda, sobre todo al infrarrojo cercano (más largo de 700 nm) y al ultravioleta (más corto que 400 nm) también se les llama luz a veces, sobre todo cuando la visibilidad para los humanos no es relevante.
Si la radiación que tiene una frecuencia en la región visible del espectro electromagnético se refleja en un objeto, como por ejemplo un plato hondo de fruta, y luego impacta en nuestros ojos, obtenemos una percepción visual de la escena. El sistema visual de nuestro cerebro procesa la multitud de frecuencias reflejadas en diferentes sombras y matices, y a través de este fenéomeno psicofísico que todavía no se entiende completamente, es como percibiríamos los objetos.
En la mayor parte de las longitudes de onda, sin embargo, la información transportada por la radiación electromagnética no es directamente descubierta por los sentidos humanos. Las fuentes naturales producen radiación electromagnética a través del espectro, y nuestra tecnología también puede manipular un amplio rango de longitudes de onda. La fibra óptica transmite luz que, aunque no es adecuada para la visión directa, puede transportar datos que luego son traducidos en sonido o imagen. La codificación usada en tales datos es similar a lo que se usa con las ondas de radio.
Luz ultravioleta
La siguiente frecuencia en el espectro es el ultravioleta (o rayos UV), que es la radiación cuya longitud de onda es más corta que el extremo violeta del espectro visible.
Al ser muy energética, la radiación ultravioleta puede romper enlaces químicos, haciendo a las moléculas excepcionalmente reactivas o ionizándolas, lo que cambia su comportamiento. Las quemaduras solares, por ejemplo, están causadas por los efectos perjudiciales de la radiación UV en las células de la piel, y pueden causar incluso cáncer de piel si la radiación daña las moléculas de ADN complejas en las células (la radiación UV es un mutágeno). El Sol emite una gran cantidad de radiación UV, lo que podría convertir rápidamente la Tierra en un desierto estéril si no fuera porque, en su mayor parte, es absorbida por la capa de ozono de la atmósfera antes de alcanzar la superficie.
Rayos X
Después del ultravioleta vienen los rayos X. Los rayos X duros tienen longitudes de onda más cortas que los rayos X suaves. Se usan generalmente para ver a través de algunos objetos, así como para la física de alta energía y la astronomía. Las estrellas de neutrones y los discos de acreción alrededor de los agujeros negros emiten rayos X, lo que nos permite estudiarlos.
Los rayos X pasan por la mayor parte de sustancias, y esto los hace útiles en medicina e industria. También son emitidos por las estrellas, y especialmente por algunos tipos de nebulosas. Un aparato de radiografía funciona disparando un haz de electrones sobre un "objetivo". Si los electrones se disparan con suficiente energía, se producen rayos X.
Rayos gamma
Después de los rayos X duros vienen los rayos gamma. Son los fotones más energéticos, y no se conoce el límite más bajo de su longitud de onda. Son útiles a los astrónomos en el estudio de objetos o regiones de alta energía, y son útiles para los físicos gracias a su capacidad penetrante y su producción de radioisótopos. La longitud de onda de los rayos gamma puede medirse con gran exactitud por medio de dispersión Compton.
No hay ningún límite exactamente definido entre las bandas del espectro electromagnético. Algunos tipos de radiación tienen una mezcla de las propiedades de radiaciones que se encuentran en las dos regiones del espectro. Por ejemplo, la luz roja se parece a la radiación infrarroja en que puede resonar algunos enlaces químicos.
¿Que es la luz?
La luz es una forma de radiación
electromagnética, llamada energía radiante, capaz de excitar la retina del ojo
humano y producir, en consecuencia, una sensación visual.se define como una onda electromagnética que está
compuesta por diminutas partículas llamadas fotones.
La energía radiante fluye en forma de ondas en cualquier medio con una
dirección determinada (propagación rectilínea), y sólo es perceptible cuando
interactúa con la materia, que permite su absorción o su reflejo. Hay entonces
un cuerpo emisor de la energía radiante y otro que la recibe. Esta interacción
o transferencia de energía de un cuerpo a otro se denomina radiación.
Físicamente se puede interpretar la luz de 2 maneras, asociadas entre sí:
• como una onda electromagnética,
• como un corpúsculo o partícula.
• como una onda electromagnética,
• como un corpúsculo o partícula.
Los fotones son las partículas
fundamentales, indivisibles, sin masa ni carga que componen la luz, los fotones
son como pequeñas bolitas que vibran y se comportan como una onda cuando se
mueven y como una partícula cuando interacciona con algún cuerpo, siendo por
tanto onda y corpúsculo al mismo tiempo. Dándole estas propiedades a la luz..
Como cualquier
onda, dispone de 4 propiedades o características que las identifica, estas
son la amplitud, la frecuencia, la velocidad y la longitud de onda. La longitud
de onda es la distancia que hay entre 2 crestas o valles de la onda, la luz
visible que es percibida por el ojo humano y que nos permite ver todo los que
nos rodea es la parte de la onda electromagnética que tiene una longitud de onda
comprendida entre 380 y 740 nanómetros, por tanto la luz tal y como la
entendemos corresponde a una pequeña porción de longitud de ondas
electromagnéticas que emiten fuentes luminosas como el Sol, las estrellas o las
lámparas de tu casa.
La luz se transmite en el vacío a la velocidad que
denominamos “velocidad de la luz” (299.792,458 km/seg, según la teoría de la
relatividad de Einstein), comprendiendo diferentes longitudes de onda y
frecuencias. Cuando cambia de medio (aire, agua, vidrio, etc.) cambia su
velocidad y su longitud de onda, permaneciendo constante su frecuencia.
Sin lugar a dudas la luz ejerce una enorme influencia en
todos los seres vivos de nuestro planeta, la vida vegetal y animal depende
directamente de su presencia, procesos químicos como la fotosíntesis, la
creación de la vitamina D o el simple reloj biológico que marca los procesos de
actividad y descanso están estrechamente ligados a la presencia de la luz.
Miles de especies de plantas y organismos como árboles,
algas o bacterias dependen directamente de luz solar para realizar el proceso
de la fotosíntesis, transformando la luz en energía química que los nutre y les
permite crecer y desarrollarse, la fotosíntesis es el proceso bioquímico más
importante de nuestro planeta Tierra puesto que es la fuente de generación de
oxígeno hacia la atmósfera así como mantiene el equilibrio alimenticio al
permitir crecer plantas y vegetales que posteriormente serán alimento de otras
especies.
Suscribirse a:
Entradas (Atom)